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FOREWORD 

This document r ep resen t s  t h e  f i n a l  progress r e p o r t  on t h e  NASA 

r e sea rch  g r a n t  NGR 44-001-027. 

A summary of each s e c t i o n  is presented below, 

The r e p o r t  is divided i n t o  t h r e e  par ts .  

P a r t - I  is a r a t h e r  thorough treatment of a n  a lgor i thm which was de- 

veloped t o  a s s i s t  i n  t he  development of c o s t  e s t ima t ing  r e l a t ionsh ips .  

The genera l  a p p l i c a t i o n  i s  to  permit a minimum sum of squares approach 

t o  f i t t i n g  a c o s t  e s t ima t ing  r e l a t ionsh ip ,  based upon t h e  c o n s t r a i n t s  of 

minimizing o r  maximizing the va r i ab le  c o s t s  i n  a hardware development 

program wi th  t h e  c o e f f i c i e n t s  being r e s t r i c t e d  t o  non-negative values,  

P a r t  11 is  an  ex tens ion  of t he  run-out c o s t  e s t ima t ion  problem wi th  

genera l ized  c o n s t r a i n t s  placed upon t h e  leas t - squares  e s t ima t ion  of t he  

polynomial being used t o  represent  percent cost-percent  t i m e  of  t h e  pro- 

gram. The technique developed uses a weak c o n s t r a i n t  of non-negative s lopes  

on t h e  tangent t o  t h e  cumulative cos t  curve. 

minimum least squares poss ib l e  under t h i s  cons t r a in t .  

This procedure provides the  

Part  I11 is a new area of development i n  t h e  c o s t  research  g r a n t  i n  

t h a t  it i s  d i r e c t e d  toward r e l a t i n g  hardward d e l i v e r i e s  t o  c o s t  and the 

segregation of variable and non-variable cos t s .  
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C H A P T E R  I 

INTRODUCTION 

A .  The Problem 

Response su r face  ana lys i s  i n  ope ra t iona l  research  i s  concerned 

wi th  t h e  r e l a t i o n s h i p  of a ' response ' ,  y ,  and a number of ' i npu t s '  

x2Y ' * *  Y Xk" Often t h i s  r e l a t i o n s h i p  can be approximated by a 

mathematical equation which i s  a so-called second order  polynomial i n  

t h e  x Such a polynomial involves only terms of t h e  form x x2 and 
io i' i' 

x . x  The b a s i c  t a s k  i n  response su r face  a n a l y s i s  i s  t o  determine t h e  

unknown c o e f f i c i e n t s  of t h i s  second o rde r  response su r face ,  using 
l j  

p i l o t  d a t a  i n  which f o r  a number of 'experiments' a s soc ia t ed  inpu t s  x 

and outputs  y have been recorded, 

i 

The customary technique of es t imat ing  t h e s e  c o e f f i c i e n t s  is by 

' least  squares ' ,  Frequently,  however, a d d i t i o n a l  information about 

t h e  response su r face  is  ava i l ab le .  In  t h i s  d i s s e r t a t i o n  techniques 

w i l l  be developed which modify t h e  above leas t  squares  procedure so 

t h a t  such a d d i t i o n a l  information, of a s p e c i f i c  type ,  can be u t i l i z e d .  

The u t i l i t y  of t h e  procedure when appl ied  t o  a test  of t h e  hypothesis 

t h a t  t h e  response su r face  is of a s p e c i a l  type  w i l l  a l s o  be  demon- 

s t r a t e d .  

Since t h e  leas t  squares  procedure when app l i ed  t o  a l i n e a r  model 

r equ i r e s  t h e  minimization of a c e r t a i n  quadra t i c  form, a genera l  pro- 

cedure f o r  minimizing a quadra t ic  form sub jec t  t o  c e r t a i n  r e s t r i c t i o n s  

is  requi red ,  The s p e c i f i c  problem t o  be  considered follows, 



2 

I 
1 
I 
I 
1 

Consider a set  of N responses y t = 1, 2 ,  C . .  , N and associ-  t '  

a t ed  input  vec to r s  of t he  form X '  t = X 9 Xkt)  and 

assume t h a t  t h e  expected response E(y ) i s  a second order  func t ion  of 

t h e  inputs  x with unknown c o e f f i c i e n t s ,  More s p e c i f i c a l l y ,  assume i t  

t h e  model 

t 

where 6; = (BlO, c c D  , Bko> and B = (Bee), i , j  = l , oe .  , k. =J 
assume t h a t  y - E(yt) = et w h e r e  t h e  e 

t t 
2 v a r i a t e s  wi th  mean zero and var iance CT e 

Fur ther ,  

are independent, normal 

Suppose now t h a t  it is  known t h a t  t h e  matr ix  B is  p o s i t i v e  s e m i -  

d e f i n i t e  ( o r  nega t ive  semi-definite).  Such s i t u a t i o n s  f requent ly  

occur i n  t h e  f i n a l  s t a g e s  of response su r face  a n a l y s i s ,  see Davies 

(1956), o r  aga in  i n  'production economics', see Heady and Dillon(1961),  

when i t  is known t h a t  a model f o r  a mult iple- input  production func t ion  

i s  meaningless i f  i t  has a saddle-point. 

The problem then is  t o  estimate t h e  unknown parameters B 

i , j  = 0 ,  1, , k sub jec t  t o  t h e  r e s t r i c t i o n  t h a t  t h e  matr ix  B is  

i j  ' 

p o s i t i v e  (o r  negat ive)  semi-definite.  The l ea s t  squares  p r i n c i p l e  i s  

t o  be used, so  t h a t  an equivalent  s ta tement  of t h e  problem is  t o  mini- 

mize, as a func t ion  of B i j ,  t h e  quadra t ic  form 

N n 

sub jec t  t o  t h e  r e s t r i c t i o n  tha t  E(y ) is  a p o s i t i v e  (o r  negat ive)  

semi-def ini te  quadra t ic  form. This problem is  solved i n  Chapter 11. 

t 
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I n  add i t ion ,  once a procedure f o r  es t imat ing  the  B i s  estab-  

l i s h e d ,  a r e l a t e d  problem w i l l  be considered. Suppose t h a t  i n s t ead  

of knowing t h a t  B is  a semi-definite mat r ix  i t  is des i red  t o  test  

t h e  hypothesis t h a t  B i s  semi-definite.  That i s ,  it w i l l  be of 

va lue  i n  response su r face  ana lys i s  t o  have t h e  c a p a b i l i t y  of t e s t i n g  

the  hypothesis t h a t  t h e  sur face  is of a type t h a t  does not  have a 

saddle-point o r ,  even more importantly,  t h a t  t he  su r face  possesses  a 

unique minimum o r  maximum. Procedures f o r  t e s t i n g  such hypotheses 

are discussed i n  Chapters I11 and I V ,  

i j  

The so lu t ion  of both the  problems descr ibed above w i l l  employ 

a convex programming algorithm developed by Hart ley and Hocking (1963). 

A b r i e f  desc r ip t ion  of t he  algorithm as appl ied t o  t h e  problem a t  

hand i s  found i n  Chapter 11, 

B. H i s t o r i c a l  Background 

Before consider ing t h e  general  ques t ion  of es t imat ion  of 

parameters under c o n s t r a i n t s  it is of i n t e r e s t  t o  review t h e  method 

of l eas t  squares  as appl ied  t o  t h e  problem of unconstrained es t i -  

mation. Consider then t h e  general  l i n e a r  model 

Y = X B + e  (3) 

where Y is  an Nxl vec to r  of observat ions,  X is  an Nxn mat r ix  of 

known cons tan ts ,  i s  an n x l  vec tor  of unknown cons tan ts  o r  para- 

meters which are t o  be est imated,  and e is  an Nxl vec to r  of e r r o r s  

with t h e  property t h e t  e MI?J(O, o I) .  
2 



Under these  condi t ions  t h e  least squares  procedure w i l l  be 

equivalent  t o  t h e  method of maximum l ike l ihood.  

unbiased estimate of t h e  unknown vec tor  B is obtained by minimizing 

The b e s t  l i n e a r  

Q ( B )  = e'e = (Y - XB)'(Y - X B ) ,  (4) 

The vec tor  o f  estimates i s  

B = (x'x)-Ix'y Y (5) 

and t h e  p rope r t i e s  of t hese  est imates  are well-known, see Graybi l l  

(1961) e 

I f  now t h e r e  are r e s t r i c t i o n s  imposed on t h e  parameter vec tor  B 

i n  t h e  form of a set of p l i n e a r  equat ions,  where p 2 n ,  t h e  least  

squares  s o l u t i o n  can be  obtained by t h e  method i n  ( 4 )  and ( 5 )  a f t e r  

a simple l i n e a r  transformation, The p rope r t i e s  of t hese  estimates 

are a l s o  known (Graybi l l ( l961)) ,  

The two problems mentioned above might be ca l l ed  t h e  'c lass ical '  

least  squares  problems, whose s o l u t i o n s  have been known s ince  before  

1900. I f  now w e  regard t h e  parameter vec to r  B t o  be r e s t r i c t e d  t o  a 

convex subspace of n-dimensional Euclidean space,  

on a more 'modern' aspec t ,  I€ t h e  problem w e r e  t o  minimize a l i n e a r  

func t ion  sub jec t  t o  l i n e a r  i n e q u a l i t i e s ,  w e  have what is  known as a 

l i n e a r  programming problem, A genera l  method f o r  s o l u t i o n  of t h i s  

problem, c a l l e d  t h e  Simplex method, has  been a v a i l a b l e  s i n c e  1958, 

see Dantzig (1948). 

t h e  problem t akes  En 9 

More genera l ly  the  problem of f ind ing  t h e  extrema of func t ions  

subjec t  t o  convex r e s t r i c t l o n s  is  c a l l e d  a mathematical programming 

problem, A good review of  current  methods and r e s u l t s  i n  t h a t  area 
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may be found i n  Dantzig (1963) and Graves and Wolfe (1963). 

The p a r t i c u l a r  problem of t h i s  paper dea l s  wi th  a quadra t ic  

ob jec t ive  func t ion ,  t he  funct ion which i s  t o  be minimized, sub jec t  t o  

t h e  r e s t r i c t i o n  t h a t  8 l ies  i n  a convex subspace of E Now i f  t h e  

subspace, S ,  can be spec i f i ed  by a f i n i t e  set of l i n e a r  i n e q u a l i t i e s  

t h e  problem would be c a l l e d  a quadra t ic  programming problem. Various 

s o l u t i o n s  t o  such a problem have been developed, examples being those 

of Beale (1955) and Wolfe (1959), Since s tandard quadra t ic  program- 

ming techniques w i l l  be found inapp l i cab le  t o  t h e  problem a t  hand, 

they w i l l  not  be discussed i n  d e t a i l  here ,  

n' 

A p a r t i c u l a r  app l i ca t ion  t o  a s t a t i s t i c a l  problem of t h i s  type 

can be  found i n  Lewish (1963),  While t h e  problems considered i n  t h e  

Lewish paper are i n  some ways s i m i l a r  t o  those considered i n  t h i s  

d i s s e r t a t i o n ,  and i n  f a c t  some of Lewish's r e s u l t s  apply d i r e c t l y  t o  

t h e  cu r ren t  problem, Lewish was only consider ing problems t o  which 

known quadra t ic  programming techniques could be appl ied .  

con t r ibu t ion  of Lewish w a s  t o  determine t h e  s t a t i s t i c a l  p rope r t i e s  of 

t h e  estimates so obtained,  an  a rea  of research  t h a t  had been l a r g e l y  

ignored by workers i n  t h e  f i e l d  of mathematical programming. 

The l a r g e  

It w i l l  be shown i n  Chapter I1 t h a t  while  t h e  r e s t r i c t i o n  space 

S is  convex f o r  our  p a r t i c u l a r  problem i t  cannot be spec i f i ed  by a 

f i n i t e  set of l i n e a r  i n e q u a l i t i e s ,  Thus, while  t h e  ob jec t ive  func t ion  

i s  quadra t ic ,  some technique other  than quadra t ic  programming must be  

used 
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While t h e  s p e c i f i c  es t imat ion problem of t h i s  d i s s e r t a t i o n  has  

received l i t t l e  a t t e n t i o n  i n  a v a i l a b l e  l i t e r a t u r e ,  t he  general  area 

of response su r face  a n a l y s i s  has enjoyed more popular i ty ,  e spec ia l ly  

s i n c e  1951. 

An e a r l y  paper i n  t h e  same v e i n  as what i s  now known as response 

su r face  a n a l y s i s  is  t h a t  of Rice (1939) i n  which an  expression i s  

der ived f o r  t h e  p robab i l i t y  tha t  a random funct ion ,  t h e  parameters 

being random with known d i s t r i b u t i o n ,  of a s i n g l e  v a r i a b l e  possesses  

a maximum i n  some s m a l l  rectangular  region.  

on response su r faces  has  followed a d i f f e r e n t  pa th ,  i t  w i l l  be seen 

t h a t  t he  d iscuss ion  i n  Chapter I V  of t h i s  paper bears  some resemblance, 

i n  a m u l t i v a r i a t e  sense,  t o  Rice 's  o r i g i n a l  idea .  

The a r t i c l e  more general ly  regarded as  being among t h e  f i r s t  t o  

While subsequent research  

broach t h e  quest ion of t h e  experimental determinat ion of optimum con- 

d i t i o n s  i s  t h e  paper by Hotel l ing (1941). Hote l l ing  cont r ibu ted  t h e  

quest ions answered by Box and Wilson (1951) i n  t h e i r  c l a s s i c  paper,  

namely those  of how t o  approach a s t a t i o n a r y  po in t  and how t o  f ind  i t  

once i n  i t s  neighborhood. Here t h e  es t imat ion  of parameters w a s  

f i rmly  e s t ab l i shed  as t h e  bas ic  opera t ion  i n  response su r face  a n a l y s i s .  

Aitchison and Si lvey (1958) discussed the  asymptotic d i s t r i b u t i o n  

of a ' r e s t r i c t e d  maximum l ik l ihood  e s t ima to r '  as w e l l  as a t e s t  of t h e  

hypothesis  t h a t  t h e  t r u e  parameter l i e s  i n  t h e  subset  spec i f i ed  by t h e  

l i n e a r  r e s t r i c t i o n .  Thei l  (1963) considered t h e  ques t ion  of p r i o r  

information i n  a regress ion  context .  H e  a l s o  considered a t e s t  of t he  

hypothesis  t h a t  p r i o r  and sample information a re  i n  agreement with 
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each o the r .  It w i l l  b e  noted t h a t  t h e  preceding two papers included 

tests of hypotheses of a type t h a t  w e  w i l l  be  consider ing.  However, 

n e i t h e r  a f fo rds  a test f o r  t h e  s p e c i f i c  hypothesis  t h a t  w i l l  be t e s t e d  

i n  t h i s  d i s s e r t a t i o n .  

A r ecen t  paper by Judge and Takayama (1966) app l i e s  quadra t i c  

programming t o  regress ion  problems with var ious  spec i f i ed  l i n e a r  in- 

equa l i ty  r e s t r i c t i o n s .  Judge and Takayama apparent ly  have solved such 

problems f o r  a wide v a r i e t y  of poss ib l e  r e s t r i c t i o n s  but  t h e  case of 

i n f i n i t e l y  many l i n e a r  r e s t r i c t i o n s ,  as w e  have here  i n  our problem, 

is  not  amenable t o  so lu t ion  by t h e i r  methods. 

I n  t h e  convex programming algori thm of Har t ley  and Hocking (1963) 

is found t h e  means of so lu t ion  f o r  t h e  es t imat ion  problem, and as w i l l  

be made apparent ,  t he  hypothesis test problem as w e l l .  Since t h e  

Hartley-Hocking algorithm requi res  t h a t  t h e  c o n s t r a i n t s  be  s p e c i f i e d  

by convex func t ions ,  i t  w i l l  b e  made clear i n  Chapter I1 why an  

i n f i n i t y  of l i n e a r  r e s t r i c t i o n s  are s p e c i f i e d  r a t h e r  than a s impler  

desc r ip t ion  of S which does not c o n s i s t  wholly of convex func t ions .  

Another paper warranting mention as an  i l l u s t r a t i o n  of a s i t u -  

a t i o n  where t h e  experimenter may w e l l  have used t h e  r e s u l t s  of Chapter 

I1 i s  t h a t  of T r a m e l  (1963). T r a m e l  writes of an experiment conducted 

by Miss i s s ipp i  S t a t e  Universi ty  s c i e n t i s t s  t o  determine t h e  economi- 

c a l l y  optimum l e v e l s  of th ree  chemical f e r t i l i z e r s  f o r  co t ton .  

Twenty-six 'production funct ions '  were f i t  by s tandard least squares  

with t h e  r e s u l t  t h a t  fourteen of t h e  twenty-six func t ions  had " i l l o -  

g i c a l  signs' '  f o r  some of t he  parameters.  The p r e c i s e  d i f f i c u l t y  w a s  



t h a t  some of t h e  second-degree terms involving a s i n g l e  v a r i a b l e  had 

negat ive  c o e f f i c i e n t s .  The conclusion reached w a s ,  

" . . . t he  usefulness  of continuous func t ions  as a means of esti- 
mating response sur faces  i n  co t ton  f e r t i l i t y  experiments i s  
quest ionable .  
su r f ace  would appear t o  be t h e  p re fe r r ed  a l t e r n a t i v e . "  

... Form-free es t imat ion  of po in t s  on the  response 

It would seem t h a t  i n  t h e  experiment descr ibed above t h e r e  w a s  

some reason t o  begin with the assumption t h a t  a good approximation t o  

t h e  a c t u a l  production funct ion would be a continuous func t ion ,  else 

t h e r e  would have been no attempt t o  estimate i t s  parameters. The 

o r i g i n a l  assumption apparently w a s  abandoned not  because i t  was  wrong 

but  because i t  w a s  impossible t o  o b t a i n  parameter estimates compatible 

wi th  t h e  p r i o r  knowledge t h a t  t h e  production func t ion  should be  a s e m i -  

d e f i n i t e  quadra t ic  form i n  t h e  input  v a r i a b l e s .  

Apparently t h e  s p e c i f i c  hypotheses t es t  w e  w i l l  make has not  been 

discussed i n  a v a i l a b l e  l i t e r a t u r e .  Probably t h i s  is  because t h e  esti- 

mation problems requi red  had no t  been solved.  Hopefully, now t h a t  t he  

problem of parameter es t imat ion i s  solved and a test procedure f o r  t he  

hypothesis  has been proposed, experimenters w i l l  want t o  both use  and 

improve upon these  i n i t i a l  r e s u l t s .  



C H A P T E R I1 

LEAST SQUARES FIT OF DEFINITE QUADRATIC FORMS 

A. Description of the Problem 

The model for the estimation problem was described in section 

I(1). Suppose now that is is known that the matrix B of model I(1) 

is positive (or negative) semi-definite. Since the results to be 

derived apply to either case with only minor differences in formula- 

tion we will henceforth suppose only that B is positive semi-definite. 

The problem is to estimate the Bij, i, j = 0, 1, *..  , k, subject 

to the above restriction, in such a fashion that the estimates have 

desirable statistical properties, 

A procedure that will be shown to lead to such estimates is that 

of 'restricted least squares'. Specifically, the method will be to 

find the vector B* which minimizes the quadratic 

N 

subject to the condition that B* = (E.), i,j = 1, c c e  , k is positive 
semi-definite, where B is the vector of all unknown parameters in 

1 J  

In section 1I.B it is shown that the requirement that the matrix 

B is semi-definite restricts the B i,j = 1, ... , k to a convex 
subset, say S, of the (kll)-dimensional B-space and hence the estima- 

tion of the Bij by minimization of the quadratic (1) subject to this 

restriction is a convex programming problem. 

ij ' 



The particular speciffcation of the subset S will be of great 

importance to the practicability of solution of the problem and merits 

some discussion. Perhaps the more familiar mode of specification of 

S is the set of inequalities arising from the condition that all prin- 

cipal minors of the matrix B have non-negative determinants. Such 

specification does result in a finite number of inequality restrictions 

on functions of the 8 However, although the region S defined by 

these inequalities is a convex region the functions defined by the 

ij 

determinants are not, in general, convex. Thus we have the rather 

unusual situation of a convex region being specified by functions 

which are not necessarily convex functions. A simple example is pre- 

sented below to illustrate this situation, 

Consider the positive definite matrix 

0, Let f (A) = al, f2(A) = a4, 1 where a > 0, a4 0 ,  ala4 - a2a3 1 

Now the definition of a convex function f - a2a3" 3 1 4  and f (A) = a a 

over a set S requires that, for any two points Ply P2 in S, 

for all h such that 0 h 1, It is easily verified that f 0 

and f 0 are in fact eonvex functions. We will now show that 

f3 0 is not convex. 

1 - -  

2 

Let 



A1 so t h a t  t h e  elements of A1 and A 

and A are  p o s i t i v e  d e f i n i t e ,  Then 

are seen t o  l i e  i n  S ;  t h a t  i s ,  2 

2 

f3(A1) = 1 , f (A ) = 1 a (5) 3 2  

L e t  A = 1 / 2  . Then 

But 

while 

f3(XA1 -k (1 - A)A2) = 514 , (7) 

Af3(A1) 4- (1 - A)f3(.A2) = 1 (8) 

From (7)  and (8) w e  observe t h a t  f o r  t h e  two p o s i t i v e  d e f i n i t e  

matrices A and A2 1 

f3(XA1 + (1 - X)A2’) Af3(A1) + (1 - A)f3(A2) (9) 

f o r  t h e  p a r t i c u l a r  X 

convex func t ion ,  

chosen so t h a t  0 2 A 2 1. Then f 3  i s  not  a 

The importance of t he  above d iscuss ion  t o  t h e  problem a t  hand 

l i es  i n  t h e  f a c t  t h a t  t he  usual convex programming procedures r equ i r e  

t h e  region S t o  be s p e c i f i e d  by a set of convex func t ions .  I n  p a r t i -  

c u l a r  t he  algori thm of Hartley and Hocking (1963) conta ins  t h i s  

requirement. 

There i s ,  however, another way t o  spec i fy  t h e  condi t ion  t h a t  t h e  

mat r ix  B be p o s i t i v e  semi-definite.  The l i n e a r  condi t ions  on the  

B i j  given by 

v’Bv 1. 0 

f o r  a l l  k-vectors v such t h a t  v’v  = 1 a l s o  s p e c i f i e s  t h a t  B is  p o s i t i v e  
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semi-definite. The description of S is in terms of simpler, linear 

functions of the Bij but carries with it the apparent disadvantage 

that the number of such functions required to specify S is infinite. 

Hence with this description the standard quadratic programming tech- 

niques do not apply. It will be shown, however, that the Hartley- 

Hocking algorithm is singularly unperturbed by such an infinity of 

constraints, so that the problem will be formulated in section 1I.C 

with the restrictions specified by (lo), 

B. The Convexity of the Restraint Space S 

A point in the (kll)-dimensional space of the Bij, i,j = l,..o,k 

To establish may be represented-by a symmetric kxk matrix B = ( B . . ) .  
1J 

the convexity of the subset S consisting of those points for which B 

is positive semi-definite, it suffices to show that if B and B 

denote two points in S then B 

0 h 2 1 (see Hadley (1964)). Now B is in S if and only if 

v'B v 2 0 for any k-vector v. 

2 1 

is in S for any = AB1 -+ (1 - h)B 3 2 

3 - 
But this follows immediately since 3 

v'B v = Av'B~v + (1 - A)v'B~v (11) 3 

and both v'B v and v'B v are non-negative. 1 2 

C, Formulation in a Convex Programming Context 

In order to regard (10) as a finite set of linear inequality 

restrictions we temporarily consider only those vectors v generated 

by a fine grid of space angles. Since the finiteness of this set of 

vectors will later be dropped we need not be more specific. 

The estimation problem then requires the minimization of the 
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quadratic Q(B)  subject to the large number of linear restrictions (10). 

Thus, though we lack the usual condition that all variables lie in 

the positive quadrant, this is just a quadratic programming problem 

although for any reasonable grid the number of restrictions in (10) 

would be extremely large, In what follows it is shown that by employ- 

ing the method of 'Tangential Approximation' for convex programming 

(Hartley and Hocking (1963) with a special pricing operation the 

specification of the grid size can be completely avoided and, more 

importantly, only a small number of the linear restrictions v'Bv 2 0 

will have to be formed, Furthermore these restrictions will be formed 

only when needed, as specified by the algorithm. 

An initial basis is required for the Simplex-like algorithm to be 

used. This is achieved by adjoining the restrictions B > - l J Y  ij - 
i,j = 0, ,k for some large l~ which must be specified. Thus the 

problem proposed for solution is 

minimize Q ( 6) 

subject to 

v'Bv 1. 0 (12) 

+ l~ 2 0 ,  i,j = 0, ... , k . 'i j 

In the Hartley and Hocking paper an algorithm is given for s o l -  

ving such convex, in this case quadratic, programming problems. The 

algorithm proposes (i) a linearization of the original problem, (ii) 

reverting to the dual linear problem, and (iii) employing a special 

pricing operation with the revised simplex methodc The essential 

feature of the algorithm is that the linearization of the problem 
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need not be done in advance but only as specified by the pricing opera- 

tion. For completeness, two basic points of the algorithm are 

reviewed here in terms of the problem (12). 

The first feature of the algorithm is a linearization which is 

accomplished as follows, Introduce the new variable z defined by 

z = -Q(B) and replace problem (12) by the equivalent problem 

maximize z 

subject to 

The linearization of problem (13)  is now completed by replacing 

the convex restriction Q ( B )  -I- z 2 0 by the set of tangent planes of 

the form 
k 

where the points B* are as yet unspecified but are conceptually the 

points of a fine grid imposed on the (k*2)-dimensional B-space. The 2 

partial derivatives are obtained from (1) as 

where 

g = o  



For computational convenience it should be pointed out that 

where Res is the difference between the right and left sides of the 

(ij)th normal equation for the regression model I(1) when the left 

side is evaluated at f3*o 

ij 

The second point of the algorithm which warrents a review is that 

of the use of the dual problem. The problem (13) with the restriction 

Q(B) + z 2 0 replaced by the large set of linear restrictions (14) is 

now a linear programming problem having associated with it a dual 

linear problem, see Gass ( 1 9 6 4 ) ,  which will be solved. Rather than 

develop a cumbersome notation it seems better to display the dual 

problem in a linear programming tableau. For this purpose it is con- 

venient to think of the (k*2) regression coefficients B 

numbered from 1 to n = (k+2) in the following order 2 

as being 2 ij 

The tableau in Table 1 is symbolic in the sense that columns 1 

and 2 simply give the rules for generating a tangent plane restriction 

of the form (14) for given B* or of the form (10) for given vector v. 

Thus rows 1 through n+l in columns 1 and 2 are just the coefficients 

of the variables fiij and z in the linear restrictions (14) and (10). 

Row 0 of the tableau is just the negative of the constant term in the 

linear restrictions. Columns S through Sn+l are self-explanatory. 0 
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s1 

-l.I 

-1 

0 

0 

0 

1 0 0 .  1 2  

aQ( B*) / a  Boo 0 

I -  
I '  
1 -  

0 

2 
-vl 

-2v v 1 2  

I -2V1Vk 

aQ( B*) / a  Bkk 
2 1 -Vk 

1 I o  

'n + 1 

0 

1 

Table 1. TABLEAU - FOR CONVEX PROGRAMMING -- 
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D .  Solution of t h e  Problem 

E i the r  t h e  o r i g i n a l  l i n e a r  problem o r  t h e  d u a l  problem descr ibed 

by t h e  tab leau  of Table 1 can t h e o r e t i c a l l y  be solved by t h e  Simplex 

method. It is  clear ,  however, t h a t  even f o r  s m a l l  problems and 

reasonable  g r i d  spacings on the  B-space and on t h e  space angles  t o  

genera te  l i n e a r  r e s t r i c t i o n s  of t h e  type (14) and (10) t h e  number of 

r e s t r i c t i o n s  i n  t h e  o r i g i n a l  problem, o r  e l se  t h e  number of columns i n  

t h e  dual  problem, w i l l  be  extremely l a r g e .  

I n  t h i s  s e c t i o n  i t  w i l l  b e  shown t h a t  by so lv ing  t h e  dua l  problem 

by t h e  revised Simplex method wi th  s p e c i a l  ' p r i c i n g  opera t ions '  t h e  

a c t u a l  formation of t h e  tableau i s  avoided. An understanding of t h e  

Simplex method i s  assumed and t h e  emphasis w i l l  be on t h e  s p e c i a l  

p r i c i n g  operat ions.  For information on t h e  simplex method see Gass 

(1964) o r  Dantzig (1963). 

A t  any s t a g e  of t h e  simplex i t e r a t i o n ,  say t h e  sth, a b a s i s  mat r ix ,  

say A c o n s i s t i n g  of n+2 columns from t h e  t ab leau ,  i s  r equ i r ed .  More 
S 

p r e c i s e l y  i t s  inverse  A-' i s  required.  

matrix A 

To s tart  t h e  i t e r a t i o n  t h e  
S 

c o n s i s t i n g  of columns So,S1,...,Sn+l is  used. It is  clear 0 
-1 t h a t  A. = A g e  

Assuming 

-1 matrix A i s  

column of t h e  

S 

t h a t  t h e  sth s t age  of t h e  i t e r a t i o n  has  been reached t h e  

a v a i l a b l e .  The simplex method must now determine i f  any 

tab leau  i s  e l i g i b l e  t o  'come-into' t h e  b a s i s  rep lac ing  one 

The usua l  
S+l. 

of t h e  c u r r e n t  columns and hence y i e l d i n g  a new b a s i s  A 

computation requi red  f o r  t h i s  s t e p  is t h a t  t h e  s c a l a r  product of t h e  

f i r s t  row of A - I ,  c a l l e d  the p r i c ing  v e c t o r ,  wi th  any column from 
S 
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t h e  tab leau  i s  formed. I f  the r e s u l t  of t h i s  p r i c i n g  opera t ion  is  

p o s i t i v e  then t h e  column is e l i g i b l e  t o  come-into t h e  b a s i s .  For 

columns of t h e  type S 

column S i s  always i n  the  basis., However, t h e  remaining columns are 

not  e x p l i c i t l y  formed and s o  a s p e c i a l  p r i c i n g  opera t ion  must be  used. 

through Sn+l t h i s  presents  no problem, and 1 

0 

It i s  shown i n  Hart ley and Hocking (1963) t h a t  among a l l  t h e  

vec to r s  which could be formed by applying t h e  r u l e s  i n  column 1, t h e  

one f o r  which t h e  p r i c i n g  operat ion y i e l d s  t h e  l a r g e s t  va lue  i s  j u s t  

t h a t  one f o r  which B:j, i n  the o rde r  given by (18) , are given by t h e  

corresponding elements of t he  p r i c i n g  vec to r ,  That i s ,  i f  t he  p r i c i n g  

vec to r  i s  designated by 

CP1Y 0 " 0 ,PnYPn+l) (19)  

then l e t  Bco = ply BPo = p2"  0 ' 0 )  Btk - - pn . Fur ther ,  i t  i s  shown 

t h a t  t h e  s c a l a r  product of the p r i c i n g  vec to r  with the  vec tor  from 

column 1 y i e l d s  

pn+l * Q ( P ~ ,  0 0 ~  9 P,) (20) 

Thus the  s p e c i a l  p r i c i n g  operat ion t o  be appl ied  t o  t h e  set  of columns 

corresponding t o  t h e  tangent  planes r e q u i r e s  only t h e  eva lua t ion  of 

(20) f o r  t h e  cu r ren t  p r i c i n g  vec tor .  I f  (20) i s  p o s i t i v e  t h e  column 

with B+ given by ( 1 9 )  i s  generated and brought i n t o  t h e  b a s i s  by t h e  

usua l  simplex i t e r a t i o n ,  
lj 

Now consider  t h e  problem of  determining whether o r  not  any column 

of t h e  type 2 i s  e l e g i b l e  t o  eome-into t h e  b a s i s .  Denoting t h e  ele- 

ments p 

correspondence descr ibed above, t h e  usua l  p r i c i n g  opera t ion  appl ied  t o  

through pn of t h e  p r i c i n g  vec to r  by 8" with the  k+2 i j  
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1 9  

a column of type 2 for arbitrary v yields 

Denoting the symmetric matrix of B* by B*, it is apparent that the 

vector is eligible to come-in if 

ij 

C C  B?.v.v = v'B*v 
ij 1J  1 J 

is smaller than zero. 

It is known (Courant and Hilbert ( 1 9 5 3 ) )  that the smallest value 

of ( 2 2 )  among all v such that v'v = 1 is given by the smallest char- 

acteristic root of the matrix B*, say X Thus if X is negative 

(21)  is positive and at least one column of type 2 is eligible to 

1" 1 

come-into the basis. It is also known that ( 2 2 )  takes on the value 

1' h when v is the normalized characteristic vector corresponding to X 

These assertions are proved following, 

1 

To determine the vector v such that v'v = 1 and v'B*v is a 

minimum, form the Lagrangian 

L(v,h) = v'B*v - AV'V 

Then set 

aL(v,x)/av = B*V - AV = o , ( 2 4 )  

or 

(B* - XI)V = 0 ( 2 5 )  

Then X is certainly one of the characteristic roots of B*, and v is the 

corresponding characteristic vector, But from ( 2 4 )  

v'B*v = v'Av = AV'V = A , ( 2 6 )  
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so t h a t  

(27) 1 "  min v'B*v = min A = A 

Thus the  s p e c i a l  p r i c i n g  opera t ion  t o  be appl ied t o  columns of 

type 2 c o n s i s t s  of determining t h e  smallest c h a r a c t e r i s t i c  r o o t ,  

of t h e  mat r ix  B*. I f  A is pos i t i ve  then none of t hese  columns is  

e l i g i b l e ,  I f  A i s  nega t ive  then the  normalized c h a r a c t e r i s t i c  vec tor  

v corresponding t o  A i s  determined and t h i s  vec to r  is  used t o  gener- 

a te  an incoming column according t o  t h e  r u l e s  i n  column 2 of t h e  

tab leau  . 

1 

1 

1 

When none of t h e  p r i c i n g  opera t ions  succeeds i n  f ind ing  a column 

e l i g i b l e  t o  come-into t h e  bas i s  t h e  i t e r a t i o n  is terminated. The 

cur ren t  p r i c i n g  vec to r  then y i e lds  t h e  des i r ed  estimates of t h e  regres-  

s i o n  c o e f f i c i e n t s ,  aga in  using t h e  correspondence descr ibed by (19) ,  

wi th  -p g iv ing  t h e  optimal va lue  of Q ( B ) .  n+l 

E. Computational Considerat ions 

It w i l l  usua l ly  be worthwhile t o  f i r s t  compute t h e  s o l u t i o n  t o  the  

unres t ra ined  least squares  problemo This can be done by one of t h e  

following two methods of which t h e  f i r s t  w i l l  usua l ly  be p re fe rab le :  

( i )  Solve t h e  system of (k12) l i n e a r  normal equat ions of t he  

unres t ra ined  leas t  squares problem (see (35) below). 

( i i )  Solve the  above l i n e a r  programming problem ignoring column 

2 of t h e  tab leau  but te rmina t ing  when p + Q(p1, . . . ,pn)c~ 

f o r  some moderately s m a l l  p o s i t i v e  p o s i t i v e  E .  The p r i c i n g  

vec to r  a t  t h i s  point  y i e l d s ,  with accuracy depending on t h e  

n+l 
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choice of E, t h e  unres t ra ined  least  squares  estimates of t he  B i j  

I f  t h e  unres t ra ined  so lu t ion  y i e l d s  a p o s i t i v e  semi-def ini te  

form no f u r t h e r  work is  needed, 

w i l l  provide a u s e f u l  prese lec ted  b a s i s  matr ix  i n  t h e  l i n e a r  program- 

ming process  using t h e  f u l l  tableau. 

I f  no t ,  t h e  unres t ra ined  s o l u t i o n  

I n  case ( i i )  t h e  l i n e a r  programming cyc les  are ,  t he re fo re ,  simply 

continued, inspec t ing  both columns 2 and 1 i n  t h e  p r i c i n g  opera t ion .  

I n  case ( i ) ,  however, t h e  unrestrained s o l u t i o n  must be used t o  

s p e c i a l l y  compute a preselected system of n+2 column vec to r s  f o r  t h e  

bas i s ,  The cons t ruc t ion  of t h i s  p rese lec ted  b a s i s  mat r ix ,  say A* is  

achieved by forming a set of tangent planes t o  t h e  convex su r face  Q ( B )  

0' 

i n  t h e  neighborhood of t he  unrestrained s o l u t i o n ,  say B .  A* w i l l  con- 

sist of columns S 

formed by computing column 1 a t  n appropr ia te  po in t s  B* .  A d e t a i l e d  

0 

and Sn+l from t h e  tab leau  separated by n columns 

procedure f o r  cons t ruc t ing  A* is  discussed i n  t h e  example problem a t  

the  end of t h i s  chapter ,  

0 

This approach r equ i r e s  of course t h a t  A* be non-singular.  There 0 

does e x i s t  t h e  p o s s i b i l i t y  tha t  t he  su r face  w i l l  be  r a t h e r  ' f l a t '  i n  

some l a r g e  &neighborhood of B o r  t h a t  some of t he  n po in t s  B* a t  

which t h e  tangent  planes are  constructed are s e l e c t e d  too near  B .  Both 
A 

of these  s i t u a t i o n s  would y ie ld  tangent planes which are e s s e n t i a l l y  

p a r a l l e l  and consequently a s ingular  A*. Also t h e  inve r se  of t h i s  

mat r ix  i s  demanded by t h e  algorithm and must be computed. 

0 

Experience with t h e  app l i ca t ion  of t h e  algori thm t o  s m a l l  t r i a l  

problems i n d i c a t e s  t h a t  procedure ( i )  should s u b s t a n t i a l l y  reduce t h e  



number of linear programming cycles required for solution. However, a 

slight risk of encountering excessive preliminary calculations, because 

of a singular A* 0' 

cussed in the example problem to follow. 

must be accepted. These calculations are again dis- 

F. Properties of the Estimates 

The algorithm discussed above describes a method for finding a 

point estimate of the regression coefficients satisfying a convex 

restriction. Following is a summary of some statistical properties of 

such estimates. 

1. The minimization of the residual sum of squares, Q(B), in the 

convex region S is identical with determining that point B* in S which 

is 'nearest' to the least squares estimator B .  The concept of 'nearest' 

refers to the metric in which the elements of B are independently dis- 

h 

,. 

tributed with equal variance, (Lewish (1963)). This result will be 

derived as a starting point f o r  the discussion in Chapter IV, 

2. If S is convex and t he  true parameter B is in S, then 
h h 

( B *  - B) ' ( B *  - B) ( B  - 6)  ' ( B  - B)  (Lewish (1963) ( 2 8 )  

3. A s  a consequence of property 2, 
,. ,. 

E ( @ *  - B ) ' ( B "  - B)  2 E(B - B ) ' ( B  - B) 9 (29) 

or 

4 .  The point estimates are clearly maximum likelihood estimates 
2 since the likelihood is proportional to exp{-Q(B)/2a 1 where Q(B) is 

minimized within the restricted parameter space PES. The estimates are 
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then consistent since this is a property associated with restricted 

maximum likelihood estimation; see Kendall and Stuart (1961). 

5. The estimators are functions of a minimal set of sufficient 

statistics. To show this write Q ( B )  in the form 
n 

Q ( B )  = Reg(B - B) + Res(Y) 
A A h 

where Reg(B - B) = ( 6  - B) 'X 'X(B  - 6) is the classical regression com- 

ponent involving only the unrestricted least squares estimator B and 

Res (Y) = (Y - XB)'(Y - XB) is the 'residual' which does not involve 

A 

A n 

B. The minimum of Q ( B )  in S is, therefore, attained at a parameter 

point which only depends on B and the latter represent a minimal set 

of sufficient statistics. There then result the optimality properties 

based on minimal sufficiency; see Rao (1965). 

6. An exact confidence region with confidence coefficient 1 - ci 

can be computed as follows: Consider the customary confidence region 

R given by 
n 

( 3 2 )  
F(ci;n,N-n)/(N-n) 

Reg(B - B) 2 nRes(Y) 

In the present ease an exact confidence region for B is then 

clearly given by the intersection of S and R, i.e., by BES R. (In case 

the intersection is empty no statement about B will be made.) Since 

this confidence region is based on minimal sufficient statistics it 

enjoys the properties described by the 'intersection principle' intro- 

duced by Roy and Bose (1953). (This region forms the basis for the 

results in Chapter 111,) 

7. Further properties are described by Hartley (1963) and the 

distribution in the case of a single relevant restriction has been 



derived by Hocking (1965). 

It should be  mentioned t h a t  t h e  above p rope r t i e s  were n o t  devel- 

oped f o r  t h e  p a r t i c u l a r  es t imator  B* derived i n  t h i s  chapter .  Rather 

they are p rope r t i e s  depending only on t h e  convexity of a r e s t r a i n t  

space and are enjoyed by any such es t imator .  

G ,  A Numerical Example 

A s  an example t o  i l l u s t r a t e  t h e  algori thm t h e  following problem 

is considered. It i s  des i red  t o  estimate t h e  c o e f f i c i e n t s  i n  t h e  

model 

-k Bll~:t + 28 x x + B 2 2 ~ 2 t  2 12 It 2 t  

sub jec t  t o  t h e  r e s t r i c t i o n  tha t  t h e  matr ix  

be p o s i t i v e  semi-def ini te ,  

A c e n t r a l  composite design y i e l d i n g  9 d a t a  po in t s  w a s  s e l ec t ed  

f o r  es t imat ing  t h e  6 c o e f f i c i e n t s  of t h i s  second-order response sur-  

face.  The d a t e  are shown i n  Table 2. 



2t yt X It t X 

1 -2 0 0.8 
2 -1 -1 13.9 
3 -1 1 10.1 
4 0 -2 41.8 
5 0 0 2.0 
6 0 2 42.2 
7 1 -1 9.7 
8 1 1 13.9 
9 2 0 1 . 4  

Table 2. Data 

The unrestricted least squares solution, ignoring the restriction 

( 3 4 ) ,  was obtained by solving the normal equations 

X’XB = X’Y 

where 

x’x = 

- 

121 
9 0 0 1 2 0  

0 1 2  0 0 0 0 

0 0 1 2  0 0 0 

1 2 0 0 3 6 0  4 

0 0 0 0 1 6  0 

12 0 0 4 0 36J - 
(X’Y)’ = (135,8,0,8,1,2,56.4,16.0,383.6) 

and 

(35) 

Y (36) 

Y (37) 

(38) 

The solution is 
A 

6 ’  = (2.112, 0,067, 0,100, -2.246, 1.000, 9,979) .(39) 

The negative estimate of Bll violates restriction (34) and 

requires that the convex programming algorithm be employed. Then let 



and l e t  

p = 10. 
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The convex programming problem i s  

maximize z 

sub jec t  t o  v’Bv 2 0 

’ij -k 10 0 i , j  = 0’1’2 ( 4 3 )  

z + Q(B)  2 0 . 
The tab leau  f o r  t h i s  example is  spe l l ed  out  i n  d e t a i l  i n  Table 3 .  

The vec tor  B* used t o  generate a t y p i c a l  column 1 i f  des i r ed  i s  

obtained from t h e  p r i c i n g  vector  f o r  t h e  cu r ren t  i t e r a t i o n  wi th  t h e  

correspondence descr ibed i n  ( 1 9 ) -  The vec to r  (v v ) used t o  generate  

a t y p i c a l  column 2 i f  des i red  i s  j u s t  t h e  normalized c h a r a c t e r i s t i c  

1’ 2 

vector  corresponding t o  t h e  minimum c h a r a c t e r i s t i c  roo t  of t h e  cu r ren t  

B matr ix  given by 

A comment on t h e  choice of t h e  cons tan t  p is a l s o  i n  order .  The 

constant  must be chosen so  tha t  t h e  optimum value  of every B exceeds 

-1-1. Thus a l a r g e  p o s i t i v e  p is suggested.  But i f  1-1 is  chosen t o  

i j  

be extremely l a r g e  i n  comparison with t h e  s i z e  expected f o r  t h e  coef- 

f i c i e n t s  t h e  number of l i n e a r  programming cyc les  i s  g r e a t l y  increased.  

Here i t  w a s  decided from observat ion of t h e  least squares  s o l u t i o n  (39) 

t h a t  p = 10 should be s a t i s f a c t o r y *  
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The p o s i t i v e  semi-definite r e s t r i c t i o n  on B includes the  restric- 

t i o n s  Bll) 0 and B 2 2  2 0 s o  t h a t  t h e  r e s t r i c t i o n s  B,,L -p, 

6' > -p are not  necessaryo This is r e f l e c t e d  i n  columns S and S 
622 - 4 

Simi la r ly  t h e  f i r s t  element of column S i n  general  S n+l' may be 7,  

replaced by any l eg i t ima te  lower bound on Q(B) .  I n  t h i s  case, s i n c e  
A 

t he  unres t ra ined  minimum of  Q(B) ,  namely Q ( B )  = 0.194, 

from the  least squares  so lu t ion ,  i t  w a s  used. 

Col 
ROT - 
0 

1 

2 

3 

4 

5 

6 

7 

0 - 
0 

0 

0 

0 

0 

0 

0 

1 

1 

t=l 

2{9B80 + 12Bf1 + 
12B*,,, - 135.8) 

LL 

* 

2{12Bi;0 + 4Bf1 * 
36B52 - 383.6) 

1 

2 

0 

0 

0 

0 

2 
1 -V 

-2v v. 1 .  

2 
-v2 

0 

- sC 

1 

0 

0 

0 

0 

0 

0 

0 

- s1 

-10 

-1 

0 

0 

0 

0 

0 

0 

- s2 

-10 

0 

-1 

0 

0 

0 

0 

0 

'3 - 
-10 

0 

0 

-1 

0 

0 

0 

0 

- 54 
0 

0 

0 

0 

-1 

0 

0 

0 

- 55 
-10 

0 

0 

0 

0 

-1 

0 

0 

i s  a v a i l a b l e  

- '6 

0 

0 

0 

0 

0 

0 

-1 

0 

57 
,194 

0 

0 

0 

0 

0 

0 

1 

Table 3 .  Example Tableau -- 

The vec to r s  Sly ..., S i n  general  S 6' 1' ..., Sn, correspond 

r e s t r i c t i o n s  B '4 -p, i P J  , and Bll 2 0 ,  B 2 2  2 0 ,  and are used 
i j  - 

t o  t h e  

only t o  
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ob ta in  a s t a r t i n g  b a s i s  i f  none i s  ava i l ab le .  They are only shown f o r  

completeness here  as they were n o t  used i n  t h i s  example. Ins tead ,  t h e  

unres t ra ined  optimum (39)  w a s  used t o  generate  an i n i t i a l  b a s i s  using 

k+2 n = ( ) = 6 columns of type 1 computed using B* t h e  va lues  i j  

f o r  a p a r t i c u l a r  p a i r  of subsc r ip t s  i ' j '  wi th  

f o r  a l l  remaining c o e f f i c i e n t s ,  where c 

of X ' X ,  63, 

B * ,  and E w a s  empir ica l ly  chosen equal  t o  1. The s i x  t a n g e n t i a l  plane 

columns a r i s i n g  from t h i s  s u b s t i t u t i o n  f o r  t = 1 , . . . , 6  were then mon- 

i t e r e d  i n  the  computer f o r  rank-degeneracy= I n  case  rank-degeneracy 

had been found t h e  program (see Chapter 111) provides  f o r  increas ing  

t h e  value of E sequen t i a l ly  by a u n i t  a t  a t i m e ,  bu t  f o r  t h i s  example 

an acceptab le  b a s i s  w a s  found wi th  E = 1. Although t h i s  procedure 

commences from t h e  empir ica l  formula ( ( 4 4 ) , ( 4 5 ) )  i t  w i l l  always pro- 

i s  t h e  tth diagonal  element t t  

r ep resen t s  t h e  element i n  t h e  tth p o s i t i o n  of t he  vec to r  
1 3 '  

2 

2 

2 

v ide  an acceptab le  prese lec t ion  and any shortcomings of t h i s  formula 

w i l l  merely increase  t h e  number of cyc les  i n  t h e  l i n e a r  programming 

process.  It is  expected, however, t h a t  such inc rease  would be  s l i g h t .  

Excessive computations r e s u l t i n g  from rank-degeneracy would appear t o  

be t h e  l a r g e r  drawback of the  procedure,  although such a s i t u a t i o n  

would arise only r a r e l y ,  I n  the  event of such an undes i rab le  s i t u a -  

t i o n  one may of course r e s o r t  t o  t h e  method ( i i )  of s e c t i o n  E ,  
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1 
1 
I 
1 

beginning the linear programming iterations with the basis consisting 

of columns S through S7 of the tableau, 0 

The 6 columns generated from formula ((44),(45)) along with col- 

umns S and S of the tableau constituted A 6 .  The inverse of this 

matrix was then computed and the linear programming iterations were 
0 7 

begun. Table 4 shows the solution of the example, exhibiting the 

initial B* from A*-', the result of every 5th iteration, and the solu- 

1'' tion. 

Q ( P ~ , ~ ~ . , ~  ) nor A exceeded E > 0, where E was chosen to be .001. 

The solution as presented in table 4 prompts the following 

0 

Termination of the iteration occured when neither p7 + Q(p 

6 1 1 1 

comments. The choice of E gave column 2 a chance to come-in early 2 
here coming into the basis on iteration number 15, 

iterations 20 and 25 a tangent plane of the column 1 type came in to 

Then between 

replace column S with rather dramatic effect. Beyond this stage it 

is seen that the algorithm works quite diligently to bring -p and Q 

together, all the while keeping the matrix B near definiteness. It is 

7 

7 

also clear that the number of cycles required to solution is very 

sensitive to the choice of E 

are observed to be positive, and the determinant of B is -,0000029, 

-Finally, the estimates of B,, and B22 1" 

or effectively zero, 

This example affords a comparison between the procedures (i) and 

(ii) of section E. Using (ii), which simply solves the problem by 

starting with the basis So,S1,0eo,S7, a total of 155 iterations were 

required. 

an initial feasible basis as described in the example and only 80 

Using (i) the unrestrained solutions were' used to construct 
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d... 

iterations were required. 

improving upon the method of construction of the initial basis, but 

it is doubtful that a substantial gain would be made. 

Further acceleration might be made by 

Another method for accelerating convergence for a problem of this 

size is that of expressing the coefficients of the linear terms in 

( 3 3 )  as linear functions of the elements of the B-matrix ( 3 4 ) .  This 

is easily done by considering the unrestricted minimization of the 

quadratic form 

{(Y - X'BX) - b'X}'{(Y - Y'BX) - b'X) ( 4 6 )  

considered as a function of the elements of b for a given B. The 

solution is 

= (X'X)-lX'(Y - BX), ( 4 7 )  

The result of this initial calculation is the reduction of the 

number of coefficients which must be estimated from 6 to only 3 .  Con- 

sequently the size of the tableau is reduced roughly by half and the 

number of iterations required for solution might be decreased ac- 

cordingly. This approach, however, has not been pursued since its 

advantage is reduced as the number of coefficients in the problem is 

increased, and even that advantage may disappear when the amount of 

requisite preliminary calculation is considered. 
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C H A P T E R  111 

THE COMPUTER PROGRAM FOR MODEL SAMPLING 

The computer program fo r  t h e  r e s t r i c t e d  e s t ima t ion  problem i n  

Chapter I1 w a s  i n i t i a l l y  writ ten f o r  t h e  IBM 7094 computer on t h e  

campus of Texas A&M University and w a s  an ex tens ion  of a program by 

Claypool (1966). Since the  problem of model sampling n e c e s s a r i l y  

inc ludes  t h e  e s t ima t ion  problem, only t h e  program f o r  model sampling 

i s  he re in  exh ib i t ed ,  The subroutines I N V E C ,  NETPRC, OUTVEC, and 

BNVERS were abs t r ac t ed  i n  t h e i r  e n t i r e t y  from Claypool's o r i g i n a l  

program. The remainder of t h e  program, however, is  e n t i r e l y  t h e  work 

of t h i s  author and t h e  whole model sampling program i s  considered by 

him t o  be a v i t a l  p a r t  of the d i s s e r t a t i o n .  

The program l i s t e d  following i s  designed f o r  t h e  IBM 360, MOD 40 

computer on t h e  campus of West Texas S ta te  Univers i ty ,  where t h e  

l a t t e r  s t a g e s  of research  on t h i s  problem were c a r r i e d  out .  Comments 

t o  t h e  r i g h t  of t h e  program proper are intended t o  i l l u s t r a t e  t h e  

r o l e  of t h e  ind ica ted  p i ece  o f  t h e  program i n  t h e  s o l u t i o n  of t h e  

problem. 
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CONSTRAINED RUN-OUT COST ESTIMATION 

With t h e  completion of t h e  Gemini program and t h e  a v a i l a b i l i b y  of 

spacec ra f t  systems c o s t  d a t a  the  problem of run-out c o s t  es t imat ion  f o r  

advanced spacecraf t  prograss i s  becoming an increas ingly  important a rea .  

The development of a n a l y t i c a l  techniques f o r  a n a l y s i s  and processing of 

c o s t  d a t a  are becoming increas ingly  complex i n  order  t o  ob ta in  a l e v e l  com- 

parable  with t h e  d a t a  which i s  present ly  ava i l ab le .  The material presented 

i n  t h i s  paper is  an extension of some earlier work which w a s  accomplished 

under t h e  NASA Research Grant. 

spacec ra f t  run-out c o s t  was one of using a least squares  f i t  t o  a pre- 

s e l e c t e d  set of percent  c o s t  - percent t i m e  curves which are defined on 

the  u n i t  i n t e r v a l  passing through t h e  o r i g i n  and through poin t  (1, 1). 

By tak ing  general ized curve forms of t h i s  type i t  is  then poss ib l e  t o  t ake  

a p a r t i a l l y  completed cost - t i m e  h i s t o r y  of a spacecraf t  subsystem, s o r t  

through t h e  group of curves u n t i l  t h e  b e s t  weighted least squares  f i t  

w a s  achieved between the  p a r t i a l  curve and the  complete curve. Af te r  

t h i s  is  accomplished, it is poss ib le  t o  make a p ro jec t ion  of t h e  p a r t i a l  

curve t o  i t s  completion da te .  This type  of technique w i l l  work very  w e l l  

f o r  a number of cases of c o s t  - t i m e  h i s t o r i e s ;  however, i t  is poss ib l e  

t o  o b t a i n  d a t a  po in t s  such t h a t  when they are appl ied  t o  a s tandard group 

of t h i r d  order  polynomials t h a t  t h e  run-out c o s t  w i l l  be less than some 

previous c o s t  during t h e  course of t h e  program. That is t o  say  t h e  under 

normal least squares  methods of f i t t i n g  any genera l  set of d a t a  po in t s  t o  

a genera l  class of t h i r d  order  o r  high order  polynomials i t  would be 

poss ib l e  t o  ob ta in  maxima i n  t h e  range zero t o  one. By cons t ra in ing  t h e  

I n i t i a l l y  t h e  problem of es t imat ing  



‘I 
I 
I 
I 
8 
I 
I 
I 
8 
I 
I 
8 
I 
8 
I 
I 
I 
I 
I 

2 

polynomials such that there are not maxima inside the interval zero to 

one it would be possible to provide run-out cost estimates which are more 

realistic from a real-world standpoint. 

constrained least squares estimate must necessarily have a larger error 

sum of squares than one which is not constrained. Therefore, it is to 

the advantage of the analyst and to the model builder to use the minimum 

number and minimum level of constraints which are necessary to assure the 

type of general performance required from an algorithm. 

was developed to conform to the above requirements. 

It should be pointed out that a 

The followlng approach 

In finding an equation that best fits the data points for percent 

cost vs. percent completion time, some arrangement of data points could 

cause the slope of the equation to be negative in the region of interest, 

which is the decimal percent time between zero and one. 

that the model would be predicting that cumulative cost would decrease 

with time, which is hardly feasible. 

This would mean 

Therefore the constraint that the slope of the curve must be non-nega- 

tive for the domain of the function must be imposed on the model. 

To apply the constraint in a continuous form for the domain of the 

function would needlessly burden the solution and increase the complexity 

of the problem. 

intervals from zero to one will suffice. 

plied NASA - MSC checks at intervals of 0.05. 
would be a routine matter. 

Therefore, a check of the slope for sufficiently small 

The computer program to be sup- 

To change the interval size 

The check to insure a non-negative slope would require that: 
* 

B + 2C(X ) + 3D(X ) &  2 0 
j j 



3 

For each point (denoted by X ) that does not meet the inequality, a 
j 

constraint term must be combined with the least square function. The 

term will be: 
9 

X (B + 2CX + 3DXL - Uj) 3 3 3 
The term U is a slack variable, and either X or U must be zero, depend- 

j 3 3 
ing on the problem. Therefore each combination of U or X equaling zero 

must be tried. 
j 3 

These numerous required calculations are the reason that 

each point is not constrained to be non-negative immediately. 

Thus, the function t o  be minimized is: 

P 
C A (B + 2CX + 3DX2 - Uj) 2 3 2 n 

F = C (A + BXI + CXi + DXi - yi) + 
j 3 3 i=l j -1 

where p is the number of points that were associated with a negative slope. 

Taking the derivative of the function in respect to A, B, Cy D, and 

X (taking in respect t o  U is not beneficial) respectively, and setting 

them equal to zero gives the following set of equations. 

nA + BCX 3 cy 2 3 + CCXi + DZXi 

2 

i i 

3 4 = CXiYi 

3 4 5 = CXiYi 

j 
AZXi + BCXi + CCXi + DCXi + CX 

2 2 ACXi + BCXi + CCXi + DCXi + C2X X 3 3  

3 3  
3 = CXiYi 3 4 5 6 ACXi + BCXi + CCXi + DCXi + C3h X 

B + C2X + D3X2 5 0  
3 1 - 5  

For j = 1, 2, ..., p 

After solving for every combination of A and U being set to zero, the 

solution for A, B, C, & D giving the minimum sum of squares is chosen. 
3 j 
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After this, another check must be made to insure that this combination 

of coefficients does not allow the slope to be negative in the region of 

interest. 

added to the constraints and the operations repeated. 

If the slope is negative at any point, this point(s) must be 



STATISTICAL SEPARATION OF 

VARIABLE AND NON-VARIABLE COSTS IN THE 

GEMINI SPACECRAFT PROGRAM 

by Glen Se l f  

In t roduc t ion  

A major t a s k  dur ing  t h e  last phase of t h i s  research  g ran t  has been t o  

determine s t a t i s t i c a l l y  o r i en ted  methodology which would provide a sepa ra t ion  

of t h e  v a r i a b l e  and non-variable o r  r ecu r r ing  and non-recurring c o s t s  asso- 

c i a t e d  wi th  t h e  subsystems of t he  Gemini spacecraft. 

perience under o t h e r  c o s t  research c o n t r a c t s  NASA/MSC prefer red  t h a t  a 

pr imar i ly  s ta t is t ical  approach, which would be r e l a t i v e l y  i n s e n s i t i v e  t o  

any assumptions, be made by t h e  ana lys i s  performed under t h i s  phase of t h e  

grant.  

d a t a  which was made a v a i l a b l e  through NASA/MSC t o  t h e  researchers  on t h i s  

Due t o  previous ex- 

Due t o  t h e  l a r g e  and r e l a t i v e l y  complete f i l e  of subsystem c o s t  

g ran t ,  it was poss ib l e  t o  perform ana lyses  of t he  d a t a  which had previously 

been abandoned due t o  t h e  l ack  of reasonable  and c o n s i s t e n t  data.  

the e f f o r t s  of M r .  Aubin Ferguson i n  ASDT/MSC it was poss ib le  t o  compile 

Through 

a d a t a  bank f o r  t h i s  ana lys i s .  

being developed by Texas A6rM University in t h i s  area of c o s t  segrega t ion ,  

I n  o rde r  t o  demonstrate t he  methodology 
., 

a s i n g l e  subsystem, subsystem, Number 37, the r e a c t a n t  supply subsystem, 

was chosen on a more o r  less random b a s i s  f o r  purposes of demonstrating the  

techniques of methodology developed herein.  The b a s i c  approach is t o  maxi- 

mize the  c o r r e l a t i o n  of the various types of hardware d e l i v e r i e s  wi th  t h e  

c o s t  ca t egor i e s  ava i lab le .  This r e l a t i o n s h i p  is  maximized through a s i m p l e  

c o r r e l a t i o n  r o u t i n e  which w i l l  be descr ibed  i n  more d e t a i l  i n  those s e c t i o n s  

which follow. A f t e r  t h i s  c o r r e l a t i o n  r o u t i n e  has been used t o  e s t a b l i s h  

t h e  appropr i a t e  s ta t is t ical  lead-lag r e l a t i o n s h i p  wi th in  these  d a t a ,  t h e  

1 
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d a t a  a r e  ad jus ted  f o r  lead-lag r e l a t ionsh ips  i n  order  t h a t  s tandard mult i -  

v a r i a t e  regress ion  ana lys i s  could be performed t o  provide a p red ic t ive  

type model. In  o rde r  t o  achieve even b e t t e r  and more r e a l i s t i c  r e s u l t s  t h e  

use of a convex programing technique was employed t o  determine both 

maximum and minimum of those  costs which could be c a l l e d  v a r i a b l e  during 

the  program. 

examples w i l l  be presented i n  the  text which follows. . 

A development of these techniques along wi th  i l l u s t r a t i v e  

Es tab l i sh ing  Lead-Lag Relat ionships  Within t h e  Hardware Delivery VS. Cost 

Data P i c t u r e  

The bas i c  philosophy of t h i s  phase of research  was t o  relate phys ica l  

hardware d e l i v e r i e s  t o  those c o s t  data which had been co l lec ted .  One of  

the  immediately obvious requirements upon inspec t ion  of t h e  two groups 

of d a t a  was t h a t  t h e r e  was a lead-lag r e l a t i o n s h i p  t h a t  appeared t o  

e x i s t  between t h e  hardware and the c o s t  where both were being represented 

as d i s c r e t e  func t ions  over t i m e .  In order  t o  test t h e  theo r i e s  summarized 

above in r e l a t i o n s h i p  to v a r i a b l e  and non-variable c o s t s  assoc ia ted  wi th  

spacec ra f t  subsystem development and production, subsystem 37, r e a c t a n t  

supply subsystem was se l ec t ed  pr imari ly  due t o  the  fact t h a t  it was pro- 

duced by one major sub-contractor and t h a t  t h e  hardware de l ive ry  d a t a  w a s  

i n  a r e l a t i v e l y  useable format. 

ten d i f f e r e n t  type of hardware d e l i v e r i e s  p lus  a t o t a l  accumulation of 

In t h i s  p a r t i c u l a r  subsystem the re  were 

d e l i v e r i e s .  

d a t e s  t o  the  prime con t r ac to r ,  McDonald A i r c r a f t  Corp. 

These d e l i v e r i e s  could be pin-pointed i n  t i m e  by de l ive ry  

The type of sub- 

systems being considered were oxygen subsystem, the  hydrogen subsystem, 

the  dua l  pressure r egu la to r ,  t h e  hydrogen t ransducer ,  t h e  oxygen t r ans -  

ducer,  the  hydrogen pressure  r e l i e f  valve, t h e  oxygen pressure relief valve, 

the  low-pressure dua l  valve and t h e  oxygen and hydrogen sybsystems were 

2 
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a 
broken down i n t o  both long and shor t  missions wi th  the  missions 5 and 7 

being the  long dura t ion  missions and missions 6 ,  8, 9, 10, 11 and 12 

being the  s h o r t  dura t ion  missions i n  the  Gemini program. 

The non-zero c o s t  ava i l ab le  t o  t h i s  p a r t  of t h e  study include the  

following: engineering, manufacturing, q u a l i t y  con t ro l ,  too l ing ,  admini- 

strative c o s t  by t h e  prime cont rac tor  f o r  sub-contractor programs, material 

and minor sub-contrac.ts, ground support equipment, spares and m j o r  sub- 

con t rac to r  cos ts .  

level. 

basis as opposed t o  those da t a  being ava i l ab le  f o r  t he  major sub-contractors  

on a bi-annual basis .  

c o r r e l a t i o n  was t o  be determined among d e l i v e r i e s  and c o s t s  that the  more 

d e t a i l e d  da t a  would provide the b e t t e r  chance of e s t a b l i s h i n g  c o r r e l a t i o n  

p a t t e r n s  between the  two da ta  groups. 

used i n  t h i s  p a r t i c u l a r  

f u t u r e  s t u d i e s  might be due t o  the fact tha t  i t  would have an averaging 

e f f e c t  upon t h e  bookkeeping being conducted on these hardware programs. 

The advantage t o  the  averaging e f f e c t  would be the  e l imina t ion  of some 

r a t h e r  systematic  v a r i a t i o n  which tends t o  ind ica t e  t h a t  t he  accounting 

records a r e  adjusted toward the  end of t he  year  i n  order  t o  more properly 

r e l e c t  t he  t o t a l  costs expended. The NASA da ta  c o l l e c t i o n  has tended t o  

e l imina te  much of these over-estimation tendencies on the  part of t he  

prime and sub-contractors;  however, q u a r t e r l y  grouping of t he  da t a  might 

s t i l l  f u r t h e r  reduce v a r i a t i o n s  of t h i s  nature.  The caut ions  s t i l l  exist 

These da t a  were analyzed first a t  t h e  major sub-contractor 

This was pr imar i ly  due t o  t h e  d a t a  being a v a i l a b l e  on a monthly 

It was f e l t  that i f  a s t a t i s t i c a l l y  s i g n i f i c a n t  

Even though q u a r t e r l y  d a t a  were not  

phase of the study, one advantage t o  its use i n  

t h a t  gross  groupings would tend to e l imina te  the  s e n s i t i v i t y  

t o  the  ana lys i s  technique being discussed i n  t h i s  s e c t i o n  of 

It should be pointed ou t  t h a t  during the  rou t ine  &:ompilation 

3 
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the  repor t .  

Gf 'these da ta  
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t h a t  were used i n  t h e  a n a l y s i s  from va r ious  sources obvious incons i s t enc ie s  

were discovered, 

and procurement, t hese  were adjusted i n  a r a t i o n a l  manner whenever possible.  

Generally, t he  first c o s t  d a t a  point i n  each ca tegory  was eliminated be- 

cause it appeared to be a n  accumulation of some six t o  twelve months of 

c o s t  being r e p o r t e d f o r  t h e  first t i m e  i n  t h e  official  bookkeeping se tup  

f o r  t he  c o s t  r e p o r t i n g  system on the  form 533 f o r  t he  prime con t r ac to r ,  

McDonald. I n  order  t o  avoid d iscuss ion  of t h e  s p e c i f i c  da t a ,  t h e  numerical 

va lues  a s soc ia t ed  wi th  c o s t s  and d e l i v e r i e s  w i l l  be submitted under sepa ra t e  

cover  t o  NASA/MSC/ASTD, but  w i l l  be r e f e r r e d  t o  i n  t h i s  r e p o r t  w i t h  co t -  

r e l a t i o n  and r eg res s ion  c o e f f i c i e n t s  provided t h e  reader. 

Based upon t h e  knowledge of t h e  mechanism of production 

From t h e  s tandpoin t  of hardware d e l i v e r i e s  and the  f a c t  t h a t  p r i -  

mar i ly  t h e  McDonald e f f o r t  w a s  being reviewed, another  f a c t o r  i n  the  

hardware d e l i v e r y  p i c t u r e  seem to be  most s i g n i f i c a n t  and relevant to t h e  

c o s t  a n a l y s i s  being performed. 

i t e m s  being re turned  to t h e  vendor. 

110 p a r t s  de l ive red  and of those 50 were pointed o u t  as having been i n  

rework s t a t u s  and having been returned t o  t h e  subcont rac tor  on s p e c i f i c  

d a t e s  dur ing  t h e  program. 

of hardware i t e m s  t o  Airesearch, i t  w a s  decided t o  include these  events  

as p a r t  of t h e  d a t a  a n a l y s i s  i n  an a t tempt  t o  d e f i n e  t h e  causal r e l a t i o n -  

s h i p s  for c o s t  as nea r ly  as possible. 

This w a s  t h e  ex i s t ence  of a number of rework 

For example, t he re  were a t o t a l  of 

Due t o  McDonald's involvement i n  the  r e t u r n  

I n  order  to make the  de r iva t ion  of t h e  r e c u r r i n g  and non-recurring 

c o s t  as s t a t i s t i c a l l y  o r i en ted  as possible,  t h e  lead-lag r e l a t i o n s h i p s  

were analyzed using a c o r r e l a t i o n  type ana lys i s .  This c o r r e l a t i o n  w a s  

made between t h e  observed de l ive ry  d a t e s  and t h e  observed c o s t  data.  

Since t h e  c o s t  d a t a  extended from August of 1962 up through November 

4 
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of 1966 and s i n c e  de l ive ry  of hardware began i n  December of 1964 and termi- 

nated i n  August 1966, it w a s  no t  obvious t o  t h e  casua l  observer as t o  what 

t h e  appropr i a t e  lead-lag r e l a t i o n s h i p  should be  between t h e  two groups of 

data. Therefore, a simple computation as shown i n  Formula 1 below 

n n n 

i = 1, 2 ,  ... n = Sifi  - Sij is1 di i=1 i=l 
n n  

r j  

$3 I d i  (1)j = 1, ..., n-n+l 
I 

where j is an index of t h e  s t a r t i n g  po in t  i n  t h e  cost d a t a  ser ies .  

provided 

might e x i s t  i n  t h e  data .  Figure 1 d i s p l a y s  t h e  correlogram a n a l y s i s  f o r  

engineering c o s t  vs. t o t a l  d e l i v e r i e s .  The p a r t i c u l a r  type  of p a t t e r n  

t h a t  is  d e s i r e a b l e  wi th in  t h i s  ana lys i s  is one which has a r e l a t i v e l y  l a r g e  

p o s i t i v e  c o r r e l a t i o n  c o e f f i c i e n t  with much smaller va lues  of c o r r e l a t i o n  on 

e i t h e r  s ide .  For example, i f  a lag of 1 0  months had a c o r r e l a t i o n  of .9 

wi th  t h e  l a g  a t  9 and 11 months having a c o r r e l a t i o n  near zero o r  nega t ive ,  

then  i t  could be assumed t h a t  t h e  c o r r e l a t i o n  a n a l y s i s  had discovered a 

s i g n i f i c a n t  r e l a t i o n s h i p  between the t w o  p a t t e r n s  observed i n  t h e  c o s t  d a t a  

and t h e  number of hardware d e l i v e r i e s  on a t i m e  period by time period bas i s .  

The i n t e r p r e t a t i o n  of t hese  correlograms can be  r e l a t e d  t o  some degree t o  

t i m e  series a n a l y s i s  of au to  regress ive  data .  That is, as t h e  c o r r e l a t i o n  

c o e f f i c i e n t s  cyc le  from l a r g e  p o s i t i v e  va lues  t o  l a r g e  nega t ive  va lues  and 

back again,  t h i s  tends t o  ind ica t e  a phasing-in and phasing-out of t h e  

agreement of t h e  t w o  p a t t e r n s  wi th in  t h e  time per iods  being observed. 

Therefore, i t  can be seen t h a t  the d e s i r e a b l e  p a t t e r n  descr ibed above would 

i n d i c a t e  a r e l a t i v e l y  good " f i t " .  

lead-lag r e l a t i o n s h i p s  i t  is poss ib le  t o  avoid t h e  in t roduc t ion  of s u b j e c t i v e  

This 

t h e  ana lys t  with a correlogram type a n a l y s i s  of t h e  p a t t e r n s  which 

By using t h i s  technique t o  e s t a b l i s h  
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estimates as t o  what these  r e l a t ionsh ips  might be. There i s  one small 

s t a t i s t i c a l  danger i n  t h i s  type of approach, t h a t  is, with  a l imi ted  number 

of d e l i v e r i e s  t h e  c o r r e l a t i o n s  might be expected t o  behave i r r a t i o n a l l y  

and perhaps g ive  some f a l s e  ind ica t ion  of c o r r e l a t i o n  where, i n  fact, 

none d id  e x i s t .  In  order t o  avoid t h i s  type of occurrene9, Figure 2 has 

been included i n  t h i s  r e p o r t  f o r  re ference  i n  case indiv idua ls  choose t o  

perform t h e i r  own a n a l y s i s  o f  these types of data.  

a n a l y s i s  of a l l  hardware types VS. a l l  ca t egor i e s  was performed on the  

da t a  f o r  Subsystem 37. 

such t h a t  t h e  lead-lag r e l a t ionsh ips  could be e s t ab l i shed  d i r e c t l y  and t h e  

a n a l y s i s  of c o s t  continued. 

Computation of Variable Costs Through Constrained Regression 

A complete c o r r e l a t i o n  

I n  general ,  t hese  ana lyses  gave favorable  r e s u l t s  

The con t inua t ion  of the cost . :analysis u t i l i z e d  simple mul t ip l e  l i n e a r  

r eg res s ion  techniques without  weighting of t he  d a t a  except as t h a t  imposed 

by t h e  r e s t r i c t i n g  the  cons tan t  term t o  be zero  and r equ i r ing  a l l  co- 

e f f i c i e n t s  t o  be p o s i t i v e  i n  the  equations. This is  a l eg i t ima te  mathe- 

mat ica l  programming approach t o  model bu i ld ing  and does not permit t h e  s u b '  

j e c t i v e  mode t o  be introduced i n  the  r e a l  sense. I n i t i a l l y ,  simple l i n e a r  

r eg res s ion  models were used t o  analyze t h e  data.  

a n a l y s i s  was r e l a t i v e l y  good i n  t h a t  t h e  explained v a r i a t i o n  of t h e  re- 

g res s ion  a n a l y s i s  f o r  a l l  types of c o s t  approached .8, t h a t  is t o  say, 

80% o r  b e t t e r  of t h e  v a r i a t i o n  observed i n  the c o s t  d a t a  could be a t t r i b u t e d  

t o  t h e  hardware d e l i v e r y  v a r i a b l e s  which were included i n  t h e  a n a l y s i s  a s i n -  

dependent va r i ab le s .  

same simple l i n e a r  r eg res s ion  case,  it is poss ib l e  t o  o b t a i n  an  explained 

v a r i a t i o n  i n  excess of 90% i n  some of the  c o s t  c a t e g o r i e s  which i s  a 

genera l  i nd ica t ion  of t h e  t i m e  dependency of c o s t  a s soc ia t ed  w i t h  these  

types o f  programs. 

The r e s u l t s  of t h i s  

By introduc3- t i m e  as an  independent v a r i a b l e  i n  the  

Through t h e  use of those  techniques a l r eady  developed, 

7 





it has been poss ib le  t o  e s t a b l i s h  r e l a t i v e l y  good separa t ion  of  v a r i a b l e  

and non-variable c o s t s  which do not appear t o  have very high s e n s i t i v i t y  

t o  any o f  the  bas i c  assumptions used i n  the  ana lys i s ;  however, by one more 

a d d i t i o n a l  c o n s t r a i n t  of a physical type which w i l l  permi t  t he  determinat ion 

of  a maximizing o r  minimizing funct ion wi th  respect t o  non-variable c o s t s  

over t i m e ,  it w i l l  be poss ib le  t o  even more completely def ine  the  separa t ion  

of non-variable and v a r i a b l e  costs ,  

The research  reported i n  t h i s  s ec t ion  of t he  f i n a l  r epor t  has  in- 

d ica ted  the  va lue  of d e t a i l  c o s t  c o l l e c t i o n  da ta  during the  course of pro- 

grams such as Gemini. It i s  made poss ib le  a r a t h e r  thorough look a t  those 

d a t a  which were co l l ec t ed  and indicated types of da t a  which should be 

co l l ec t ed  on on-going and f u t u r e  spacecraf t  programs i n  order t o  cont inuingly 

up-grade c o s t  es t imat ion  capab i l i t y  i n  both the  long term subsystem and 

component level c o s t  p red ic t ion  techniques. 

segrega t ion  of v a r i a b l e  and non-variable c o s t s  w i l l  permit more exac t ing  

adminis t ra t ion  of extensions on production c o n t r a c t s  and i n  t h e  hardware 

procurement e f f o r t  i n  general. 

been one of achieving the  bes t  p red ic t ion  techniques possible ,  t he  extension 

of  t he  use of these  r e s u l t s  have been ind ica t ive  as a p a r t  of t h e  research  

e f f o r t ;  therefore ,  t he  app l i ca t ion  of t h e  methodology derived by t h i s  

research  e f f o r t  is l e f t  t o  the  reader. 

It is v i sua l i zed  t h a t  a d e t a i l  

The approach presented i n  t h i s  r epor t  has 
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COMPUTER PROGRAM FOR LEAD-LAG CORRELATION ANALYSIS 

I 
I 
1 
8 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
1 

$ J O B  9 6 1 2 6 2 4 1 4 T 4  2 1000 GLEN S E L F  C O R R E L A T I O N  A N A L Y S I S  

S I B B O X  01-F 
$ E X E C U T E  AGG I E 
b I B F T C  Y Y Y Y Y Y  

D I M E N S I O N  X ( 1 O O I v  Y ( l O O I , R ( 1 0 0 ) ,  L A G ( 1 0 0 )  
R E A D I 5 9 5 0 )  M t N  

C M = N U M B E R  OF C O S T  D A T A  P O I N T S ,  N = N U M B E R  O F  D E L I V E R Y  D A T A  P O I N T S  
5 0  F O R M A T (  2 0 x 1  2 1  3 )  

DO 125 I = l t M  
1 2 5  R E A D  (5 ,100)  X ( I ) , Y I I )  

C X ( I )  = M O N T H L Y  C O S T  D A T A ,  Y ( 1 )  = M O N T H L Y  D E L I V E R Y  D A T A  
100 F O R M A T  (2F5.0)  

FN = N 
L A G ( 1 )  = M-N 

K = 0.0 
J = 0.0 

W R I T E  ( 6 t 1 0 3 )  
103 F O R M A T  ( 1 H O c  10x1  2 4 H C O R R E t A T I O N  C O E F F I C I E N T S )  
106 SUMX = 0.0 

SUMY = 0.0 
SUMXY = 0.0 

SUMSQY = 0.0 
SUMSQX = 0.0 

NM = M - 3  
DO 102 I = l , N  
SUMX = SUMX + X ( 1 )  
SUMY = SUMY + Y f I )  
S U M X Y  = S U M X Y  + t X ( I ) * Y ( I ) )  

S U M S Q Y  = SUMSQY + ( Y ( I ) * Y I I ) )  

S Q 1  = ( S U M X * S U M Y ) / F N  
R N U N  = SUMXY - S Q 1  
D E N 1  = SUMSQX - ( ( S U M X + S U M X ) / F N )  
DEN2 = S U M S Q Y  - ( ( S U M Y + S U M Y ) / F N )  
D E N 3  = OENl*DEN2 
R D E N  = SQRl(DEN3) 
J=J+1 
K = K + 1  

R f J )  = R N U M I R D E N  

L A G ( J + l )  = L A G ( J )  - 1 

SUMSQX = SUMSQX + ( x t n + x r I ) )  

102 C O N T I N U E  

L = M-K 

W R I T E  ( 6 r 1 0 4 )  R ( J ) s  L A G ( J )  

104 F O R M A T  (1H0,  2 2 x 1  F l O . 6 ,  10x1  5 H L A G  = ,151 
I F  ( L A G ( J + l ) )  200,2019201 

200 FN = N + L A G ( J + l )  

TEMP = X ( 1 )  
X I 1 1  = X ( I + l )  
X I M )  = 0.0 
Y ( L )  = 0.0 

I F ( J - N M )  106,106,105 

2 0 1  DO 1 8 9  I = l , M  

1 8 9  C O N T I N U E  

105 C O N T I N U E  
S T O P  
E N D  
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